Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.506
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Biol Macromol ; 267(Pt 2): 131285, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583841

RESUMO

Thermal stability and iron saturation of lactoferrin (LF) are of great significance not only for the evaluation of the biological activities of LF but also for the optimization of the isolation and drying process parameters. Differential scanning calorimetry (DSC) is a well-established and efficient method for thermal stability and iron saturation detection in LF. However, multiple DSC measurements are typically performed sequentially, thus time-consuming and low throughput. Herein, we introduced the differential scanning fluorimetry (DSF) approach to overcome such limitations. The DSF can monitor LF thermal unfolding with a commonly available real-time PCR instrument and a fluorescent dye (SYPRO orange or Glomelt), and the measured melting temperature of LF is consistent with that determined by DSC. On the basis of that, a new quantification method was established for determination of iron saturation levels using the linear correlation of the degree of ion saturation of LF with DSF measurements. Such DSF method is simple, inexpensive, rapid (<15 min), and high throughput (>96 samples per experiment), and provides a valuable alternative tool for thermal stability detection of LF and other whey proteins.


Assuntos
Fluorometria , Ferro , Lactoferrina , Estabilidade Proteica , Lactoferrina/química , Lactoferrina/análise , Ferro/química , Fluorometria/métodos , Varredura Diferencial de Calorimetria/métodos , Temperatura , Ensaios de Triagem em Larga Escala/métodos
2.
Biochem Biophys Res Commun ; 709: 149806, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38579619

RESUMO

Differential Scanning Calorimetry (DSC) is a central technique in investigating drug - membrane interactions, a critical component of pharmaceutical research. DSC measures the heat difference between a sample of interest and a reference as a function of temperature or time, contributing essential knowledge on the thermally induced phase changes in lipid membranes and how these changes are affected by incorporating pharmacological substances. The manuscript discusses the use of phospholipid bilayers, which can form structures like unilamellar and multilamellar vesicles, providing a simplified yet representative membrane model to investigate the complex dynamics of how drugs interact with and penetrate cellular barriers. The manuscript consolidates data from various studies, providing a comprehensive understanding of the mechanisms underlying drug - membrane interactions, the determinants that influence these interactions, and the crucial role of DSC in elucidating these components. It further explores the interactions of specific classes of drugs with phospholipid membranes, including non-steroidal anti-inflammatory drugs, anticancer agents, natural products with antioxidant properties, and Alzheimer's disease therapeutics. The manuscript underscores the critical importance of DSC in this field and the need for continued research to improve our understanding of these interactions, acting as a valuable resource for researchers.


Assuntos
Antineoplásicos , Bicamadas Lipídicas , Varredura Diferencial de Calorimetria , Bicamadas Lipídicas/química , Fosfolipídeos/química , Membranas Artificiais , Lipossomos/química
3.
Langmuir ; 40(15): 7883-7895, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38587263

RESUMO

N-Acylated amino acids and neurotransmitters in mammals exert significant biological effects on the nervous system, immune responses, and vasculature. N-Acyl derivatives of γ-aminobutyric acid (N-acyl GABA), which belong to both classes mentioned above, are prominent among them. In this work, a homologous series of N-acyl GABAs bearing saturated N-acyl chains (C8-C18) have been synthesized and characterized with respect to self-assembly, thermotropic phase behavior, and supramolecular organization. Differential scanning calorimetric studies revealed that the transition enthalpies and entropies of N-acyl GABAs are linearly dependent on the acyl chain length. The crystal structure of N-tridecanoyl GABA showed that the molecules are packed in bilayers with the acyl chains aligned parallel to the bilayer normal and that the carboxyl groups from opposite layers associate to form dimeric structures involving strong O-H···O hydrogen bonds. In addition, N-H···O and C-H···O hydrogen bonds between amide moieties of adjacent molecules within each layer stabilize the molecular packing. Powder X-ray diffraction studies showed odd-even alternation in the d spacings, suggesting that the odd chain and even chain compounds pack differently. Equimolar mixtures of N-palmitoyl GABA and dipalmitoylphosphatidylcholine (DPPC) were found to form stable unilamellar vesicles with diameters of ∼300-340 nm, which could encapsulate doxorubicin, an anticancer drug, with higher efficiency and better release characteristics than DPPC liposomes at physiologically relevant pH. These liposomes exhibit faster release of doxorubicin at acidic pH (<7.0), indicating their potential utility as drug carriers in cancer chemotherapy.


Assuntos
1,2-Dipalmitoilfosfatidilcolina , Lipossomos , Animais , 1,2-Dipalmitoilfosfatidilcolina/química , Termodinâmica , Doxorrubicina , Ácido gama-Aminobutírico , Varredura Diferencial de Calorimetria , Bicamadas Lipídicas/química , Mamíferos
4.
Molecules ; 29(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38675529

RESUMO

It is well known that daidzein has various significant medicinal values and health benefits, such as anti-oxidant, anti-inflammatory, anti-cancer, anti-diabetic, cholesterol lowering, neuroprotective, cardioprotective and so on. To our disappointment, poor solubility, low permeability and inferior bioavailability seriously limit its clinical application and market development. To optimize the solubility, permeability and bioavailability of daidzein, the cocrystal of daidzein and piperazine was prepared through a scientific and reasonable design, which was thoroughly characterized by single-crystal X-ray diffraction, powder X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry and thermogravimetric analysis. Combining single-crystal X-ray diffraction analysis with theoretical calculation, detailed structural information on the cocrystal was clarified and validated. In addition, a series of evaluations on the pharmacogenetic properties of the cocrystal were investigated. The results indicated that the cocrystal of daidzein and piperazine possessed the favorable stability, increased solubility, improved permeability and optimized bioavailability of daidzein. Compared with the parent drug, the formation of cocrystal, respectively, resulted in 3.9-, 3.1-, 4.9- and 60.8-fold enhancement in the solubility in four different media, 4.8-fold elevation in the permeability and 3.2-fold in the bioavailability of daidzein. Targeting the pharmaceutical defects of daidzein, the surprising elevation in the solubility, permeability and bioavailability of daidzein was realized by a clever cocrystal strategy, which not only devoted assistance to the market development and clinical application of daidzein but also paved a new path to address the drug-forming defects of insoluble drugs.


Assuntos
Disponibilidade Biológica , Isoflavonas , Permeabilidade , Piperazina , Solubilidade , Isoflavonas/química , Isoflavonas/farmacocinética , Piperazina/química , Cristalização , Difração de Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Animais , Cristalografia por Raios X , Varredura Diferencial de Calorimetria , Humanos
5.
Int J Pharm ; 655: 123997, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38484861

RESUMO

The superior flexibility, efficient drug loading, high surface-to-volume ratio, ease of formulation, and cost-controlled production are considered exceptional advantages of nanofibers (NFs) as a smart delivery system. Deflazacort (DEF) is an anti-inflammatory and immunosuppressant agent. It is categorized as a poorly soluble class II drug. In this study, DEF-loaded polymeric nanofibrous using the electrospinning technique mats, Polyvinyl pyrrolidone (PVP) with or without Poloxamer 188 (PX) were used as mat-forming polymers. Microscopical imaging, drug content (%), and in vitro dissolution studies were conducted for all NFs formulae (F1-F7). All NFs improved the DEF dissolution compared to the unprocessed form, with the superiority of the PVP/PX hybrid. The optimized formula (F7) exhibited an average diameter of 655.46 ± 90.4 nm and % drug content of 84.33 ± 5.58. The dissolution parameters of DEF loaded in PVP/PX NFs (F7) reflected a release of 95.3 % ± 3.1 and 102.6 % ± 1.7 after 5 and 60 min, respectively. NFs (F7) was investigated for drug-polymer compatibility using Fourier-Transform Infrared Spectroscopy (FTIR), Powder X-ray diffraction analysis (PXRD), and Differential Scanning Calorimetry (DSC). In vivo anti-inflammatory study employing male Sprague-Dawley rats showed a significant reduction of rat paw edema for F7 (p < 0.05) compared with unprocessed DEF with a normal epidermal and dermal skin structure comparable to the healthy negative control. Immunohistochemical and morphometric data displayed similarities between the immune reaction of F7 and the negative healthy control. The finding of this work emphasized that DEF loaded in PVP/PX NFs could be considered a useful strategy for enhancing the therapeutic performance of DEF.


Assuntos
Nanofibras , Povidona , Pregnenodionas , Masculino , Ratos , Animais , Povidona/química , Polivinil , Poloxâmero , Nanofibras/química , Solubilidade , Ratos Sprague-Dawley , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Anti-Inflamatórios , Varredura Diferencial de Calorimetria
6.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474022

RESUMO

In this study, amorphous solid dispersions (ASDs) of pterostilbene (PTR) with polyvinylpyrrolidone polymers (PVP K30 and VA64) were prepared through milling, affirming the amorphous dispersion of PTR via X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC). Subsequent analysis of DSC thermograms, augmented using mathematical equations such as the Gordon-Taylor and Couchman-Karasz equations, facilitated the determination of predicted values for glass transition (Tg), PTR's miscibility with PVP, and the strength of PTR's interaction with the polymers. Fourier-transform infrared (FTIR) analysis validated interactions maintaining PTR's amorphous state and identified involved functional groups, namely, the 4'-OH and/or -CH groups of PTR and the C=O group of PVP. The study culminated in evaluating the impact of amorphization on water solubility, the release profile in pH 6.8, and in vitro permeability (PAMPA-GIT and BBB methods). In addition, it was determined how improving water solubility affects the increase in antioxidant (ABTS, DPPH, CUPRAC, and FRAP assays) and neuroprotective (inhibition of cholinesterases: AChE and BChE) properties. The apparent solubility of the pure PTR was ~4.0 µg·mL-1 and showed no activity in the considered assays. For obtained ASDs (PTR-PVP30/PTR-PVPVA64, respectively) improvements in apparent solubility (410.8 and 383.2 µg·mL-1), release profile, permeability, antioxidant properties (ABTS: IC50 = 52.37/52.99 µg·mL-1, DPPH: IC50 = 163.43/173.96 µg·mL-1, CUPRAC: IC0.5 = 122.27/129.59 µg·mL-1, FRAP: IC0.5 = 95.69/98.57 µg·mL-1), and neuroprotective effects (AChE: 39.1%/36.2%, BChE: 76.9%/73.2%) were confirmed.


Assuntos
Antioxidantes , Benzotiazóis , Povidona , Ácidos Sulfônicos , Resveratrol , Povidona/química , Polímeros/química , Solubilidade , Difração de Raios X , Água , Varredura Diferencial de Calorimetria , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Food Chem ; 444: 138631, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38325079

RESUMO

Naringenin (NGE), a typical flavanone abundant in citrus fruits, exhibits remarkable antioxidant activities. However, its low solubility in oil restricts its widespread use in inhibiting lipid oxidation. In this study, we present a novel and effective approach to address this limitation by developing a naringenin-phospholipid complex (NGE-PC COM). Comprehensive analytical techniques including Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) were employed to confirm the formation of the NGE-PC COM and elucidate the interaction mechanism between NGE and phospholipids molecules. Notably, the oil-solubility of NGE was significantly enhanced by approximately 2700-fold when formulated as a phospholipid complex in soybean oil. The improved oil-solubility of NGE-PC COM enabled effective inhibition of oil thermal oxidation under high temperature conditions. Generally, this investigation proposed a novel and promising strategy for employing flavanones with strong antioxidant activities to enhance the thermal oxidative stability of edible oil during heating processes.


Assuntos
Flavanonas , Fosfolipídeos , Fosfolipídeos/química , Óleo de Soja , Antioxidantes , Calefação , Flavanonas/química , Solubilidade , Estresse Oxidativo , Varredura Diferencial de Calorimetria , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Difração de Raios X
8.
PLoS One ; 19(2): e0297467, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38394326

RESUMO

Glipizide, a poor water-soluble drug belongs to BCS class II. The proposed work aimed to enhance the solubility of glipizide by preparing solid dispersions, using polyvinyl pyrrolidone (PVP) and polyethylene glycol (PEG). Solvent evaporation method was used for the preparation of glipizide solid dispersions. Solid dispersions were prepared in four different drug-to-polymer ratios i.e. 1:1, 1:2, 1:3 and 1:4. Mainly effect of three polymers (PVP K30, PVP K90 and PEG 6000) was evaluated on the solubility and dissolution of glipizide. The in-vitro dissolution of all prepared formulations was performed under pH 6.8 at 37°C using USP type II apparatus. In-vitro dissolution results revealed that the formulations having high concentrations of the polymer showed enhanced solubility. Enhancements in the solubility and rate of dissolution of the drug were noted in solid dispersion formulations compared to the physical blends and pure drug. Solid dispersions containing polyvinyl pyrrolidone exhibited a more favorable pattern of drug release compared to the corresponding solid dispersions with PEG. An increase in the maximum solubility of the drug within the solid dispersion systems was observed in all instances. Two solid dispersion formulations were optimized and formulated into immediate-release tablets, which passed all the pharmacopoeial and non-pharmacopoeial tests. Fourier transformed Infrared (FTIR) spectroscopy X-ray diffraction (XRD) and Differential scanning calorimetry (DSC) were used to indicate drug: polymer interactions in solid state. Analysis of the solid dispersion samples through characterization tests indicated the compatibility between the drug and the polymer.


Assuntos
Glipizida , Polivinil , Solubilidade , Polímeros/química , Polietilenoglicóis/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Povidona/química , Difração de Raios X , Varredura Diferencial de Calorimetria
9.
Eur J Pharm Biopharm ; 196: 114202, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309539

RESUMO

The crystal structure of a new Progesterone (PROG) co-crystal with para-aminobenzoic acid (PABA) showing enhanced solution properties is reported. PROG-PABA co-crystal was first identified though an in silico coformer screening process using the CSD Co-crystal deign function, then confirmed through a solution evaporation crystallisation experiment. The resulting co-crystal was characterized using single crystal X-ray diffraction, differential scanning calorimetry and Fourier-transform infrared spectroscopy. Liquid assisted grinding was selected as a suitable scale up method compared to spray drying and antisolvent methods due to minimal starting material phases in the final product. Following scale up, aqueous solubility, stability and dissolution measurements were carried out. PROG-PABA showed increased distinct aqueous solubility and dissolution compared to PROG starting material and was shown to be stable at 75 % relative humidity for 3 months. Tablets containing co-crystal were produced then compared to the Utrogestan® soft gel capsule formulation through a dissolution experiment. PROG-PABA tablets showed a substantial increase in dissolution over the course of the experiment with over 30× the amount of PROG dissolved at the 3-hour time point. This co-crystal shows positive implications for developing an improved oral PROG formulation.


Assuntos
Ácido 4-Aminobenzoico , Progesterona , Progesterona/química , Cristalografia por Raios X , Solubilidade , Cristalização/métodos , Varredura Diferencial de Calorimetria , Difração de Raios X , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
10.
Biomolecules ; 14(1)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38254685

RESUMO

Neurofilaments are neuron-specific proteins that belong to the intermediate filament (IFs) protein family, with the neurofilament light chain protein (NFL) being the most abundant. The IFs structure typically includes a central coiled-coil rod domain comprised of coils 1A, 1B, and 2, separated by linker regions. The thermal stability of the IF molecule plays a crucial role in its ability for self-association. In the current study, we investigated the thermal stability of NFL coiled-coil domains by analyzing a set of recombinant domains and their fusions (NFL1B, NFL1A+1B, NFL2, NFL1B+2, and NFLROD) via circular dichroism spectroscopy and differential scanning calorimetry. The thermal stability of coiled-coil domains is evident in a wide range of temperatures, and thermal transition values (Tm) correspond well between isolated coiled-coil domains and full-length NFL. NFL1B has a Tm of 39.4 °C, and its' fusions, NFL1A+1B and NFL1B+2, have a Tm of 41.9 °C and 41.5 °C, respectively. However, in the case of NFL2, thermal denaturation includes at least two thermal transitions at 37.2 °C and 62.7 °C. These data indicate that the continuous α-helical structure of the coil 2 domain has parts with varied thermal stability. Among all the NFL fragments, only NFL2 underwent irreversible heat-induced denaturation. Together, these results unveil the origin of full-length NFL's thermal transitions, and reveal its domains structure and properties.


Assuntos
Filamentos Intermediários , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral , Varredura Diferencial de Calorimetria , Neurônios , Domínios Proteicos
11.
Drug Des Devel Ther ; 17: 3661-3684, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38084128

RESUMO

Background: Metformin hydrochloride (HCl) microspheres and nanoparticles were formulated to enhance bioavailability and minimize side effects through sustained action and optimized drug-release characteristics. Initially, the same formulation design with different ratios of metformin HCl and Eudragit RSPO was used to formulate four batches of microspheres and nanoparticles using solvent evaporation and nanoprecipitation methods, respectively. Methods: The produced formulations were evaluated based on particle size and shape (particle size distribution (PSD), scanning electron microscope (SEM)), incompatibility (differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR)), drug release pattern, permeation behavior, in vivo hypoglycemic effects, and in vitro anticancer potential. Results: Compatibility studies concluded that there was minimal interaction between metformin HCl and the polymer, whereas SEM images revealed smoother, more spherical nanoparticles than microspheres. Drug release from the formulations was primarily controlled by the non-Fickian diffusion process, except for A1 and A4 by Fickian, and B3 by Super case II. Korsmeyer-Peppas was the best-fit model for the maximum formulations. The best formulations of microspheres and nanoparticles, based on greater drug release, drug entrapment, and compatibility characteristics, were attributed to the study of drug permeation by non-everted intestinal sacs, in vivo anti-hyperglycemic activity, and in vitro anticancer activity. Conclusion: This study suggests that the proposed metformin HCl formulation can dramatically reduce hyperglycemic conditions and may also have anticancer potential.


Assuntos
Metformina , Nanopartículas , Metformina/farmacologia , Metformina/química , Química Farmacêutica/métodos , Preparações de Ação Retardada , Microesferas , Projetos de Pesquisa , Hipoglicemiantes/farmacologia , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Varredura Diferencial de Calorimetria
12.
Sci Rep ; 13(1): 20066, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973851

RESUMO

Thermal shift assay (TSA) with altered temperature has been the most widely used method for monitoring protein stability for drug research. However, there is a pressing need for isothermal techniques as alternatives. This urgent demand arises from the limitations of TSA, which can sometimes provide misleading ranking of protein stability and fail to accurately reflect protein stability under physiological conditions. Although differential scanning fluorimetry has significantly improved throughput in comparison to differential scanning calorimetry and differential static light scattering throughput, all these methods exhibit moderate sensitivity. In contrast, current isothermal chemical denaturation (ICD) techniques may not offer the same throughput capabilities as TSA, but it provides more precise information about protein stability and interactions. Unfortunately, ICD also suffers from limited sensitivity, typically in micromolar range. We have developed a novel method to overcome these challenges, namely throughput and sensitivity. The novel Förster Resonance Energy Transfer (FRET)-Probe as an external probe is highly applicable to isothermal protein stability monitoring but also to conventional TSA. We have investigated ICD for multiple proteins with focus on KRASG12C with covalent inhibitors and three chemical denaturants performed at nanomolar protein concentration. Data showed corresponding inhibitor-induced stabilization of KRASG12C to those reported by nucleotide exchange assay.


Assuntos
Proteínas , Proteínas Proto-Oncogênicas p21(ras) , Estabilidade Proteica , Fluorometria , Varredura Diferencial de Calorimetria , Desnaturação Proteica
13.
Molecules ; 28(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38005300

RESUMO

MDM2 is an E3 ubiquitin ligase which is crucial for the degradation and inhibition of the key tumor-suppressor protein p53. In this work, we explored the stability and the conformational features of the N-terminal region of MDM2 (N-MDM2), through which it binds to the p53 protein as well as other protein partners. The isolated domain possessed a native-like conformational stability in a narrow pH range (7.0 to 10.0), as shown by intrinsic and 8-anilinonapthalene-1-sulfonic acid (ANS) fluorescence, far-UV circular dichroism (CD), and size exclusion chromatography (SEC). Guanidinium chloride (GdmCl) denaturation followed by intrinsic and ANS fluorescence, far-UV CD and SEC at physiological pH, and differential scanning calorimetry (DSC) and thermo-fluorescence experiments showed that (i) the conformational stability of isolated N-MDM2 was very low; and (ii) unfolding occurred through the presence of several intermediates. The presence of a hierarchy in the unfolding intermediates was also evidenced through DSC and by simulating the unfolding process with the help of computational techniques based on constraint network analysis (CNA). We propose that the low stability of this protein is related to its inherent flexibility and its ability to interact with several molecular partners through different routes.


Assuntos
Dobramento de Proteína , Proteína Supressora de Tumor p53 , Desnaturação Proteica , Conformação Proteica , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Espectrometria de Fluorescência , Varredura Diferencial de Calorimetria
14.
Int J Mol Sci ; 24(22)2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-38003414

RESUMO

Bioactive peptides have emerged as promising therapeutic agents with antimicrobial, antifungal, antiparasitic, and, recently, antitumoral properties with a mechanism of action based on membrane destabilization and cell death, often involving a conformational change in the peptide. This biophysical study aims to provide preliminary insights into the membrane-level antitumoral mode of action of crotalicidin, a cationic host defense peptide from rattlesnake venom, toward breast cancer cell lines. The lipid composition of breast cancer cell lines was obtained after lipid extraction and quantification to prepare representative cell membrane models. Membrane-peptide interaction studies were performed using differential scanning calorimetry and Fourier-transform infrared spectroscopy. The outcome evidences the potential antitumoral activity and selectivity of crotalicidin toward breast cancer cell lines and suggests a mechanism initiated by the electrostatic interaction of the peptide with the lipid bilayer surface and posterior conformation change with membrane intercalation between the acyl chains in negatively charged lipid systems. This research provides valuable information that clears up the antitumoral mode of action of crotalicidin.


Assuntos
Anti-Infecciosos , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Fragmentos de Peptídeos/farmacologia , Bicamadas Lipídicas/química , Anti-Infecciosos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Varredura Diferencial de Calorimetria
15.
J Chem Phys ; 159(5)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37526164

RESUMO

G-quadruplexes are four-stranded DNA structures that have been found in the cell and are thought to act as elements of control in genomic events. The measurements of the thermodynamic stability, ΔG, of G-quadruplexes shed light on the molecular forces involved in the stabilization of these structures. In thermodynamic studies, the differential heat capacity, ΔCP, of the folded and unfolded states of a G-quadruplex is a fundamental property that describes the temperature dependences of the differential enthalpy, ΔH, entropy, ΔS, and free energy, ΔG. Despite its recognized importance, the ΔCP of G-quadruplex unfolding has not been measured directly. Here, we use differential scanning calorimetry to evaluate changes in heat capacity, ΔCP, accompanying the unfolding transitions of G-quadruplexes formed by modified DNA sequences from the promoter regions of the c-MYC, VEGF, and Bcl-2 oncogenes. The average value of ΔCP is 0.49 ± 0.12 kcal mol-1 K-1. Our analysis revealed that disregarding ΔCP leads to significant errors in extrapolated values of the differential enthalpy, ΔH, and entropy, ΔS, of the folded and unfolded DNA conformations. Although the compensation between ΔH and ΔS weakens the effect of ΔCP on the differential free energy, ΔG, neglecting ΔCP may still result in relative errors in ΔG extrapolated to room temperature as great as 140%. We emphasize the importance of proper consideration of the effect of ΔCP in conformational studies of guanine-rich DNA molecules.


Assuntos
Quadruplex G , Temperatura Alta , Termodinâmica , Entropia , Varredura Diferencial de Calorimetria , DNA/química
16.
AAPS PharmSciTech ; 24(6): 164, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37552343

RESUMO

Ibrutinib (IBR) is a biopharmaceutical classification system (BCS) class II drug and an irreversible Bruton's tyrosine kinase (BTK) inhibitor. IBR has an extremely low oral bioavailability due to the activity of the CYP3A4 enzyme. The current intention of the research was to enhance solubility followed by oral bioavailability of IBR using the hot melt extrusion (HME) technique by formulating drug-drug cocrystals (DDCs). Ketoconazole (KET) is an active CYP3A4 inhibitor and was selected based on computational studies and solubility parameter prediction. Differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), proton nuclear magnetic resonance (1H NMR), and scanning electron microscopy (SEM) evaluations were employed for estimating the formation of IBR-KET DDCs. The IBR-KET DDC system was discovered to have a hydrogen bond (H-bond) and π-π-stacking interactions, in accordance with the computational results. Further, IBR-KET DDCs showed enhanced solubility, stability, powder dissolution, in vitro release, and flow properties. Furthermore, IBR-KET-DDCs were associated with enhanced cytotoxic activity in K562-CCL-243 cancer cell lines when compared with IBR and KET alone. In vivo pharmacokinetic studies have shown an enhanced oral bioavailability of up to 4.30 folds of IBR and 2.31 folds of KET through IBR-KET-DDCs compared to that of the IBR and KET suspension alone. Thus, the prepared IBR-KET-DDCs using the HME technique stand as a favorable drug delivery system that augments the solubility and oral bioavailability of IBR along with KET.


Assuntos
Cetoconazol , Solubilidade , Disponibilidade Biológica , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Pós , Difração de Raios X , Varredura Diferencial de Calorimetria
17.
Int J Mol Sci ; 24(15)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37569589

RESUMO

This work aimed to develop and characterize a water-soluble, high-release active pharmaceutical ingredient (API) composite based on the practically water-insoluble API N-butyl-N-methyl-1-phenylpyrrolo[1,2-a]pyrazine-3-carboxamide (GML-3), a substance with antidepressant and anxiolytic action. This allows to ensure the bioavailability of the medicinal product of combined action. Composites obtained by the method of creating amorphous solid dispersions, where polyvinylpyrrolidone (PVP) or Soluplus® was used as a polymer, were studied for crystallinity, stability and the release of API from the composite into purified water. The resulting differential scanning calorimetry (DSC), powder X-ray diffractometry (PXRD), and dissolution test data indicate that the resulting composites are amorphous at 1:15 API: polymer ratios for PVP and 1:5 for Soluplus®, which ensures the solubility of GML-3 in purified water and maintaining the supercritical state in solution.


Assuntos
Polímeros , Povidona , Polímeros/química , Solubilidade , Povidona/química , Água , Pirazinas , Varredura Diferencial de Calorimetria , Difração de Raios X
18.
Eur J Pharm Sci ; 188: 106530, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37459902

RESUMO

Pazopanib (PZ) is a multikinase inhibitor, which is mainly used in the treatment of soft tissue sarcoma and advanced renal cancer. However, because of its water insolubility, oral bioavailability is poor. At the same time, photo lability and high dose oral administration lead to severe hepatotoxicity, which is limited in clinical application. In this paper, the novel pazopanib-fumarate disodium glycyrrhizinate nanocrystalline micelles are successfully prepared by liquid-assisted ball milling. The prepared cocrystals and nanocrystalline micelle structures are systematically characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and Fourier Transform Infrared Spectrometer (FTIR) analysis. In vitro solubility and dissolution experiments show that the solubility and dissolution of nanocrystalline micelles are significantly improved under different simulated physiological conditions. The accelerated stabilization experiments show that the nanocrystalline micelles have good physical and chemical stability and showed excellent stability in water (Zeta potential was 62.39 mV). In addition, the in vivo bioavailability of nanocrystalline micelles is 3 times higher than that of PZ, and the therapeutic threshold (> 20 µg/mL) is up to 30 h. This new strategy provides a feasible solution to the undesirable properties of PZ.


Assuntos
Ácido Glicirretínico , Micelas , Fumaratos , Solubilidade , Varredura Diferencial de Calorimetria , Água , Difração de Raios X , Disponibilidade Biológica , Espectroscopia de Infravermelho com Transformada de Fourier
19.
Curr Oncol ; 30(7): 6079-6096, 2023 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-37504313

RESUMO

Melanoma is the fifth most common cancer in the United States and the deadliest of all skin cancers. Even with recent advancements in treatment, there is still a 13% two-year recurrence rate, with approximately 30% of recurrences being distant metastases. Identifying patients at high risk for recurrence or advanced disease is critical for optimal clinical decision-making. Currently, there is substantial variability in the selection of screening tests and imaging, with most modalities characterized by relatively low accuracy. In the current study, we built upon a preliminary examination of differential scanning calorimetry (DSC) in the melanoma setting to examine its utility for diagnostic and prognostic assessment. Using regression analysis, we found that selected DSC profile (thermogram) parameters were useful for differentiation between melanoma patients and healthy controls, with more complex models distinguishing melanoma patients with no evidence of disease from patients with active disease. Thermogram features contributing to the third principal component (PC3) were useful for differentiation between controls and melanoma patients, and Cox proportional hazards regression analysis indicated that PC3 was useful for predicting the overall survival of active melanoma patients. With the further development and optimization of the classification method, DSC could complement current diagnostic strategies to improve screening, diagnosis, and prognosis of melanoma patients.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Estados Unidos , Melanoma/patologia , Neoplasias Cutâneas/patologia , Varredura Diferencial de Calorimetria , Prognóstico
20.
Int J Pharm ; 642: 123210, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37433350

RESUMO

The present investigation was performed to demonstrate the therapeutic potential of lapatinib ditosylate (LD) loaded nanosponge for the treatment of breast cancer. The study reports the fabrication of nanosponge by reaction of ß-cyclodextrin with a cross-linking agent, diphenyl carbonate, at several molar ratios using the ultrasound-assisted synthesis method. The drug was loaded into the rightest nanosponge by lyophilization with and without 0.25% w/w polyvinylpyrrolidone. The significantly reduced crystallinity of developed formulations was established by differential scanning calorimetry (DSC), and powder X-ray diffractometry (PXRD). Morphological changes of LD, and formulations were compared by scanning electron microscopic (SEM) technique. Fourier transform infrared (FT-IR), and nuclear magnetic resonance (NMR) spectroscopic analysis were performed to establish the interacting groups of the host and guest molecules. It revealed interaction of the quinazoline ring, furan ring, and chlorobenzene functionality of LD with the hydroxyl group of ß-cyclodextrin based nanosponge. Similar predictions were also obtained during their in-silico analysis. Saturation solubility and in vitro drug release studies revealed a 4.03-fold, and 2.43-fold rise in aqueous solubility, and dissolution of LD in the optimized formula (F2). The MCF-7 cell line study, too, revealed the higher efficiency of nanosponge formulations. The in vivo pharmacokinetic studies of optimized formulation illustrated 2.76-times, and 3.34-times enhancements in Cmax and oral bioavailability, respectively. Concomitant results were obtained during the in vivo studies performed using DMBA-induced breast cancer models in female Sprague Dawley rats. The tumor burden was found to be reduced to approximately 60% by the use of F2. The hematological parameters of animals treated with F2 were also improved. Histopathology of breast tissue excised from an F2-treated rat showed a reduced size of ductal epithelial cells associated with shrunken cribriform structures and cross-bridges. The in vivo toxicity studies also showcased reduced hepatotoxicity of the formulation. Altogether, it can be concluded that encapsulation of lapatinib ditosylate in ß-cyclodextrin nanosponge has improved aqueous solubility, bioavailability and, in turn, therapeutic efficacy.


Assuntos
Neoplasias , beta-Ciclodextrinas , Feminino , Ratos , Animais , Lapatinib , Espectroscopia de Infravermelho com Transformada de Fourier , Ratos Sprague-Dawley , beta-Ciclodextrinas/química , Solubilidade , Varredura Diferencial de Calorimetria , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA